The influence of syntax on the domains of phonological rule application has historically been captured in basically two ways. The most widely accepted view, the indirect reference model, holds that syntactic constituent information is mapped onto prosodic constituents, and this is what the phonology has access to (Nespor and Vogel 1986, Selkirk 1986, a.o.). Under this approach the size of prosodic constituents can be conditioned both by syntactic information and by phonological factors. A less widely held view, the direct reference model, is that, at least for some or most phonological phenomena, the syntax provides directly all the information that is needed to define the domain of application of phonological processes. Earlier approaches within the direct reference model resorted to notions like c-command (Kaisse 1985), government (Elordieta 1997), or domains of theta-role assignment (Seidl 2001). With the advent of Phase Theory (Chomsky 2001), phases and the concept of Spell-Out (or Transfer) have provided a new means of determining domains of phonological rule application.

This talk, centered on processes above the word, will argue in favor of prosodic domains by focusing on the direct reference hypothesis in its most radical version; that is, a model in which the domain of phonological operations is determined solely by syntactic factors, with no building of prosodic domains at any level of analysis. Probably the most recent contribution that assumes this view is D’Alessandro & Scheer (2015), a proposal that weakens Phase Theory in very important respects to account for the domain of application of phonological processes. It will be shown that such a proposal is at the same time too powerful, by predicting languages that do not seem to be attested, and too restrictive, by facing serious difficulties in accounting for the context of application of specific processes in existing languages. The talk will also address some aspects related to exponence at the phrasal level for phenomena like contractions, for which analyses resorting to phases have also been made (e.g. Sato 2012).

Selected references